\(\int \frac {(d+e x) \sqrt {f+g x}}{\sqrt {a+c x^2}} \, dx\) [638]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 26, antiderivative size = 331 \[ \int \frac {(d+e x) \sqrt {f+g x}}{\sqrt {a+c x^2}} \, dx=\frac {2 e \sqrt {f+g x} \sqrt {a+c x^2}}{3 c}-\frac {2 \sqrt {-a} (e f+3 d g) \sqrt {f+g x} \sqrt {1+\frac {c x^2}{a}} E\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a g}{\sqrt {-a} \sqrt {c} f-a g}\right )}{3 \sqrt {c} g \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {c} f+\sqrt {-a} g}} \sqrt {a+c x^2}}+\frac {2 \sqrt {-a} e \left (c f^2+a g^2\right ) \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {c} f+\sqrt {-a} g}} \sqrt {1+\frac {c x^2}{a}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right ),-\frac {2 a g}{\sqrt {-a} \sqrt {c} f-a g}\right )}{3 c^{3/2} g \sqrt {f+g x} \sqrt {a+c x^2}} \]

[Out]

2/3*e*(g*x+f)^(1/2)*(c*x^2+a)^(1/2)/c-2/3*(3*d*g+e*f)*EllipticE(1/2*(1-x*c^(1/2)/(-a)^(1/2))^(1/2)*2^(1/2),(-2
*a*g/(-a*g+f*(-a)^(1/2)*c^(1/2)))^(1/2))*(-a)^(1/2)*(g*x+f)^(1/2)*(1+c*x^2/a)^(1/2)/g/c^(1/2)/(c*x^2+a)^(1/2)/
((g*x+f)*c^(1/2)/(g*(-a)^(1/2)+f*c^(1/2)))^(1/2)+2/3*e*(a*g^2+c*f^2)*EllipticF(1/2*(1-x*c^(1/2)/(-a)^(1/2))^(1
/2)*2^(1/2),(-2*a*g/(-a*g+f*(-a)^(1/2)*c^(1/2)))^(1/2))*(-a)^(1/2)*(1+c*x^2/a)^(1/2)*((g*x+f)*c^(1/2)/(g*(-a)^
(1/2)+f*c^(1/2)))^(1/2)/c^(3/2)/g/(g*x+f)^(1/2)/(c*x^2+a)^(1/2)

Rubi [A] (verified)

Time = 0.41 (sec) , antiderivative size = 331, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {847, 858, 733, 435, 430} \[ \int \frac {(d+e x) \sqrt {f+g x}}{\sqrt {a+c x^2}} \, dx=\frac {2 \sqrt {-a} e \sqrt {\frac {c x^2}{a}+1} \left (a g^2+c f^2\right ) \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {-a} g+\sqrt {c} f}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right ),-\frac {2 a g}{\sqrt {-a} \sqrt {c} f-a g}\right )}{3 c^{3/2} g \sqrt {a+c x^2} \sqrt {f+g x}}-\frac {2 \sqrt {-a} \sqrt {\frac {c x^2}{a}+1} \sqrt {f+g x} (3 d g+e f) E\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a g}{\sqrt {-a} \sqrt {c} f-a g}\right )}{3 \sqrt {c} g \sqrt {a+c x^2} \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {-a} g+\sqrt {c} f}}}+\frac {2 e \sqrt {a+c x^2} \sqrt {f+g x}}{3 c} \]

[In]

Int[((d + e*x)*Sqrt[f + g*x])/Sqrt[a + c*x^2],x]

[Out]

(2*e*Sqrt[f + g*x]*Sqrt[a + c*x^2])/(3*c) - (2*Sqrt[-a]*(e*f + 3*d*g)*Sqrt[f + g*x]*Sqrt[1 + (c*x^2)/a]*Ellipt
icE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*g)/(Sqrt[-a]*Sqrt[c]*f - a*g)])/(3*Sqrt[c]*g*Sqrt[(S
qrt[c]*(f + g*x))/(Sqrt[c]*f + Sqrt[-a]*g)]*Sqrt[a + c*x^2]) + (2*Sqrt[-a]*e*(c*f^2 + a*g^2)*Sqrt[(Sqrt[c]*(f
+ g*x))/(Sqrt[c]*f + Sqrt[-a]*g)]*Sqrt[1 + (c*x^2)/a]*EllipticF[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]]
, (-2*a*g)/(Sqrt[-a]*Sqrt[c]*f - a*g)])/(3*c^(3/2)*g*Sqrt[f + g*x]*Sqrt[a + c*x^2])

Rule 430

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]
))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && Gt
Q[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 733

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2*a*Rt[-c/a, 2]*(d + e*x)^m*(Sqrt[1
+ c*(x^2/a)]/(c*Sqrt[a + c*x^2]*(c*((d + e*x)/(c*d - a*e*Rt[-c/a, 2])))^m)), Subst[Int[(1 + 2*a*e*Rt[-c/a, 2]*
(x^2/(c*d - a*e*Rt[-c/a, 2])))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-c/a, 2]*x)/2]], x] /; FreeQ[{a, c, d, e},
 x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 847

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[g*(d + e*x)^
m*((a + c*x^2)^(p + 1)/(c*(m + 2*p + 2))), x] + Dist[1/(c*(m + 2*p + 2)), Int[(d + e*x)^(m - 1)*(a + c*x^2)^p*
Simp[c*d*f*(m + 2*p + 2) - a*e*g*m + c*(e*f*(m + 2*p + 2) + d*g*m)*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, p
}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[m, 0] && NeQ[m + 2*p + 2, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ
[2*m, 2*p]) &&  !(IGtQ[m, 0] && EqQ[f, 0])

Rule 858

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 e \sqrt {f+g x} \sqrt {a+c x^2}}{3 c}+\frac {2 \int \frac {\frac {1}{2} (3 c d f-a e g)+\frac {1}{2} c (e f+3 d g) x}{\sqrt {f+g x} \sqrt {a+c x^2}} \, dx}{3 c} \\ & = \frac {2 e \sqrt {f+g x} \sqrt {a+c x^2}}{3 c}+\frac {(e f+3 d g) \int \frac {\sqrt {f+g x}}{\sqrt {a+c x^2}} \, dx}{3 g}-\frac {\left (e \left (c f^2+a g^2\right )\right ) \int \frac {1}{\sqrt {f+g x} \sqrt {a+c x^2}} \, dx}{3 c g} \\ & = \frac {2 e \sqrt {f+g x} \sqrt {a+c x^2}}{3 c}+\frac {\left (2 a (e f+3 d g) \sqrt {f+g x} \sqrt {1+\frac {c x^2}{a}}\right ) \text {Subst}\left (\int \frac {\sqrt {1+\frac {2 a \sqrt {c} g x^2}{\sqrt {-a} \left (c f-\frac {a \sqrt {c} g}{\sqrt {-a}}\right )}}}{\sqrt {1-x^2}} \, dx,x,\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )}{3 \sqrt {-a} \sqrt {c} g \sqrt {\frac {c (f+g x)}{c f-\frac {a \sqrt {c} g}{\sqrt {-a}}}} \sqrt {a+c x^2}}-\frac {\left (2 a e \left (c f^2+a g^2\right ) \sqrt {\frac {c (f+g x)}{c f-\frac {a \sqrt {c} g}{\sqrt {-a}}}} \sqrt {1+\frac {c x^2}{a}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+\frac {2 a \sqrt {c} g x^2}{\sqrt {-a} \left (c f-\frac {a \sqrt {c} g}{\sqrt {-a}}\right )}}} \, dx,x,\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )}{3 \sqrt {-a} c^{3/2} g \sqrt {f+g x} \sqrt {a+c x^2}} \\ & = \frac {2 e \sqrt {f+g x} \sqrt {a+c x^2}}{3 c}-\frac {2 \sqrt {-a} (e f+3 d g) \sqrt {f+g x} \sqrt {1+\frac {c x^2}{a}} E\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a g}{\sqrt {-a} \sqrt {c} f-a g}\right )}{3 \sqrt {c} g \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {c} f+\sqrt {-a} g}} \sqrt {a+c x^2}}+\frac {2 \sqrt {-a} e \left (c f^2+a g^2\right ) \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {c} f+\sqrt {-a} g}} \sqrt {1+\frac {c x^2}{a}} F\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a g}{\sqrt {-a} \sqrt {c} f-a g}\right )}{3 c^{3/2} g \sqrt {f+g x} \sqrt {a+c x^2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 23.52 (sec) , antiderivative size = 464, normalized size of antiderivative = 1.40 \[ \int \frac {(d+e x) \sqrt {f+g x}}{\sqrt {a+c x^2}} \, dx=\frac {2 \sqrt {f+g x} \left (e \left (a+c x^2\right )+\frac {(e f+3 d g) \left (a+c x^2\right )}{f+g x}+\frac {i c \sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}} (e f+3 d g) \sqrt {\frac {g \left (\frac {i \sqrt {a}}{\sqrt {c}}+x\right )}{f+g x}} \sqrt {-\frac {\frac {i \sqrt {a} g}{\sqrt {c}}-g x}{f+g x}} \sqrt {f+g x} E\left (i \text {arcsinh}\left (\frac {\sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}}}{\sqrt {f+g x}}\right )|\frac {\sqrt {c} f-i \sqrt {a} g}{\sqrt {c} f+i \sqrt {a} g}\right )}{g^2}+\frac {i \left (3 \sqrt {c} d+i \sqrt {a} e\right ) \left (\sqrt {c} f+i \sqrt {a} g\right ) \sqrt {\frac {g \left (\frac {i \sqrt {a}}{\sqrt {c}}+x\right )}{f+g x}} \sqrt {-\frac {\frac {i \sqrt {a} g}{\sqrt {c}}-g x}{f+g x}} \sqrt {f+g x} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}}}{\sqrt {f+g x}}\right ),\frac {\sqrt {c} f-i \sqrt {a} g}{\sqrt {c} f+i \sqrt {a} g}\right )}{g \sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}}}\right )}{3 c \sqrt {a+c x^2}} \]

[In]

Integrate[((d + e*x)*Sqrt[f + g*x])/Sqrt[a + c*x^2],x]

[Out]

(2*Sqrt[f + g*x]*(e*(a + c*x^2) + ((e*f + 3*d*g)*(a + c*x^2))/(f + g*x) + (I*c*Sqrt[-f - (I*Sqrt[a]*g)/Sqrt[c]
]*(e*f + 3*d*g)*Sqrt[(g*((I*Sqrt[a])/Sqrt[c] + x))/(f + g*x)]*Sqrt[-(((I*Sqrt[a]*g)/Sqrt[c] - g*x)/(f + g*x))]
*Sqrt[f + g*x]*EllipticE[I*ArcSinh[Sqrt[-f - (I*Sqrt[a]*g)/Sqrt[c]]/Sqrt[f + g*x]], (Sqrt[c]*f - I*Sqrt[a]*g)/
(Sqrt[c]*f + I*Sqrt[a]*g)])/g^2 + (I*(3*Sqrt[c]*d + I*Sqrt[a]*e)*(Sqrt[c]*f + I*Sqrt[a]*g)*Sqrt[(g*((I*Sqrt[a]
)/Sqrt[c] + x))/(f + g*x)]*Sqrt[-(((I*Sqrt[a]*g)/Sqrt[c] - g*x)/(f + g*x))]*Sqrt[f + g*x]*EllipticF[I*ArcSinh[
Sqrt[-f - (I*Sqrt[a]*g)/Sqrt[c]]/Sqrt[f + g*x]], (Sqrt[c]*f - I*Sqrt[a]*g)/(Sqrt[c]*f + I*Sqrt[a]*g)])/(g*Sqrt
[-f - (I*Sqrt[a]*g)/Sqrt[c]])))/(3*c*Sqrt[a + c*x^2])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(601\) vs. \(2(265)=530\).

Time = 1.29 (sec) , antiderivative size = 602, normalized size of antiderivative = 1.82

method result size
elliptic \(\frac {\sqrt {\left (g x +f \right ) \left (c \,x^{2}+a \right )}\, \left (\frac {2 e \sqrt {c g \,x^{3}+c f \,x^{2}+a g x +f a}}{3 c}+\frac {2 \left (d f -\frac {e a g}{3 c}\right ) \left (\frac {f}{g}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}}\, F\left (\sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\right )}{\sqrt {c g \,x^{3}+c f \,x^{2}+a g x +f a}}+\frac {2 \left (d g +\frac {e f}{3}\right ) \left (\frac {f}{g}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}}\, \left (\left (-\frac {f}{g}-\frac {\sqrt {-a c}}{c}\right ) E\left (\sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\right )+\frac {\sqrt {-a c}\, F\left (\sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\right )}{c}\right )}{\sqrt {c g \,x^{3}+c f \,x^{2}+a g x +f a}}\right )}{\sqrt {g x +f}\, \sqrt {c \,x^{2}+a}}\) \(602\)
risch \(\frac {2 e \sqrt {g x +f}\, \sqrt {c \,x^{2}+a}}{3 c}-\frac {\left (\frac {2 a e g \left (\frac {f}{g}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}}\, F\left (\sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\right )}{\sqrt {c g \,x^{3}+c f \,x^{2}+a g x +f a}}-\frac {6 c d f \left (\frac {f}{g}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}}\, F\left (\sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\right )}{\sqrt {c g \,x^{3}+c f \,x^{2}+a g x +f a}}-\frac {2 \left (3 c d g +c e f \right ) \left (\frac {f}{g}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}}\, \left (\left (-\frac {f}{g}-\frac {\sqrt {-a c}}{c}\right ) E\left (\sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\right )+\frac {\sqrt {-a c}\, F\left (\sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\right )}{c}\right )}{\sqrt {c g \,x^{3}+c f \,x^{2}+a g x +f a}}\right ) \sqrt {\left (g x +f \right ) \left (c \,x^{2}+a \right )}}{3 c \sqrt {g x +f}\, \sqrt {c \,x^{2}+a}}\) \(807\)
default \(\text {Expression too large to display}\) \(1286\)

[In]

int((e*x+d)*(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

((g*x+f)*(c*x^2+a))^(1/2)/(g*x+f)^(1/2)/(c*x^2+a)^(1/2)*(2/3/c*e*(c*g*x^3+c*f*x^2+a*g*x+a*f)^(1/2)+2*(d*f-1/3/
c*e*a*g)*(f/g-(-a*c)^(1/2)/c)*((x+f/g)/(f/g-(-a*c)^(1/2)/c))^(1/2)*((x-(-a*c)^(1/2)/c)/(-f/g-(-a*c)^(1/2)/c))^
(1/2)*((x+(-a*c)^(1/2)/c)/(-f/g+(-a*c)^(1/2)/c))^(1/2)/(c*g*x^3+c*f*x^2+a*g*x+a*f)^(1/2)*EllipticF(((x+f/g)/(f
/g-(-a*c)^(1/2)/c))^(1/2),((-f/g+(-a*c)^(1/2)/c)/(-f/g-(-a*c)^(1/2)/c))^(1/2))+2*(d*g+1/3*e*f)*(f/g-(-a*c)^(1/
2)/c)*((x+f/g)/(f/g-(-a*c)^(1/2)/c))^(1/2)*((x-(-a*c)^(1/2)/c)/(-f/g-(-a*c)^(1/2)/c))^(1/2)*((x+(-a*c)^(1/2)/c
)/(-f/g+(-a*c)^(1/2)/c))^(1/2)/(c*g*x^3+c*f*x^2+a*g*x+a*f)^(1/2)*((-f/g-(-a*c)^(1/2)/c)*EllipticE(((x+f/g)/(f/
g-(-a*c)^(1/2)/c))^(1/2),((-f/g+(-a*c)^(1/2)/c)/(-f/g-(-a*c)^(1/2)/c))^(1/2))+(-a*c)^(1/2)/c*EllipticF(((x+f/g
)/(f/g-(-a*c)^(1/2)/c))^(1/2),((-f/g+(-a*c)^(1/2)/c)/(-f/g-(-a*c)^(1/2)/c))^(1/2))))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 227, normalized size of antiderivative = 0.69 \[ \int \frac {(d+e x) \sqrt {f+g x}}{\sqrt {a+c x^2}} \, dx=\frac {2 \, {\left (3 \, \sqrt {c x^{2} + a} \sqrt {g x + f} c e g^{2} - {\left (c e f^{2} - 6 \, c d f g + 3 \, a e g^{2}\right )} \sqrt {c g} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c f^{2} - 3 \, a g^{2}\right )}}{3 \, c g^{2}}, -\frac {8 \, {\left (c f^{3} + 9 \, a f g^{2}\right )}}{27 \, c g^{3}}, \frac {3 \, g x + f}{3 \, g}\right ) - 3 \, {\left (c e f g + 3 \, c d g^{2}\right )} \sqrt {c g} {\rm weierstrassZeta}\left (\frac {4 \, {\left (c f^{2} - 3 \, a g^{2}\right )}}{3 \, c g^{2}}, -\frac {8 \, {\left (c f^{3} + 9 \, a f g^{2}\right )}}{27 \, c g^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c f^{2} - 3 \, a g^{2}\right )}}{3 \, c g^{2}}, -\frac {8 \, {\left (c f^{3} + 9 \, a f g^{2}\right )}}{27 \, c g^{3}}, \frac {3 \, g x + f}{3 \, g}\right )\right )\right )}}{9 \, c^{2} g^{2}} \]

[In]

integrate((e*x+d)*(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

2/9*(3*sqrt(c*x^2 + a)*sqrt(g*x + f)*c*e*g^2 - (c*e*f^2 - 6*c*d*f*g + 3*a*e*g^2)*sqrt(c*g)*weierstrassPInverse
(4/3*(c*f^2 - 3*a*g^2)/(c*g^2), -8/27*(c*f^3 + 9*a*f*g^2)/(c*g^3), 1/3*(3*g*x + f)/g) - 3*(c*e*f*g + 3*c*d*g^2
)*sqrt(c*g)*weierstrassZeta(4/3*(c*f^2 - 3*a*g^2)/(c*g^2), -8/27*(c*f^3 + 9*a*f*g^2)/(c*g^3), weierstrassPInve
rse(4/3*(c*f^2 - 3*a*g^2)/(c*g^2), -8/27*(c*f^3 + 9*a*f*g^2)/(c*g^3), 1/3*(3*g*x + f)/g)))/(c^2*g^2)

Sympy [F]

\[ \int \frac {(d+e x) \sqrt {f+g x}}{\sqrt {a+c x^2}} \, dx=\int \frac {\left (d + e x\right ) \sqrt {f + g x}}{\sqrt {a + c x^{2}}}\, dx \]

[In]

integrate((e*x+d)*(g*x+f)**(1/2)/(c*x**2+a)**(1/2),x)

[Out]

Integral((d + e*x)*sqrt(f + g*x)/sqrt(a + c*x**2), x)

Maxima [F]

\[ \int \frac {(d+e x) \sqrt {f+g x}}{\sqrt {a+c x^2}} \, dx=\int { \frac {{\left (e x + d\right )} \sqrt {g x + f}}{\sqrt {c x^{2} + a}} \,d x } \]

[In]

integrate((e*x+d)*(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((e*x + d)*sqrt(g*x + f)/sqrt(c*x^2 + a), x)

Giac [F]

\[ \int \frac {(d+e x) \sqrt {f+g x}}{\sqrt {a+c x^2}} \, dx=\int { \frac {{\left (e x + d\right )} \sqrt {g x + f}}{\sqrt {c x^{2} + a}} \,d x } \]

[In]

integrate((e*x+d)*(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate((e*x + d)*sqrt(g*x + f)/sqrt(c*x^2 + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(d+e x) \sqrt {f+g x}}{\sqrt {a+c x^2}} \, dx=\int \frac {\sqrt {f+g\,x}\,\left (d+e\,x\right )}{\sqrt {c\,x^2+a}} \,d x \]

[In]

int(((f + g*x)^(1/2)*(d + e*x))/(a + c*x^2)^(1/2),x)

[Out]

int(((f + g*x)^(1/2)*(d + e*x))/(a + c*x^2)^(1/2), x)